FSA30

Electronic Level Switch and Transmitter

- up to 2 switch points
- analogue output 4... 20 mA or $0 . . .10 \mathrm{~V}$
- IO-Link communication interface
- rotatable 320° display \& electrical connection
- resolution: $\mathbf{8}$ or 12 mm
- redundant measurement system, direct measurement
- suitable for media of density $\mathbf{>} \mathbf{0 . 6} \mathbf{~ g} / \mathbf{c m}^{\mathbf{3}}$
- applicable for foam formation
- max. temperature: $80^{\circ} \mathrm{C}$ max. pressure 15 bar
- measuring lengths: $\mathbf{2 5 0} . . \mathbf{3 0 0 0} \mathbf{~ m m}$

Typical applications:

The sensor is used wherever small to medium fill levels of even aggressive media are measured. The measuring length between 250 and 3000 mm allows flexible use in many containers.
The nature of the FSA30 level switch and transmitter makes it particularly suitable for use in hydraulic, lubrication and cooling systems.
Because of their on-site display, the FSA30 are also ideal for installation at process-relevant points for visual inspection.

Description:

The level transmitters of the type series FSA30 operate according to the float principle with magnetic transmission. The float is lifted by the rising liquid level in the tank and actuates the contacts of a reed contact / resistance chain in the sliding tube by the magnetic field of the permanent magnet located in the float.
The output signal is a voltage proportional to the level. Due to the electronics used, up to two switching points, an analogue signal (current or voltage) and IO-Link are available for data use.

Technical Data:

Sensor element:	Reed switch
Materials:	
Wetted parts:	
Stem (fitting, tube):	brass
Float:	NBR foam
Seals:	FKM, EPDM or NBR
Electronics housing:	stainless steel VA2A, PA / PC
Operating elements:	3 easy-response pushbuttons
System of protection:	IP65 / IP67
Protection class:	III
Electrical connection:	Plug M12 $\times 1$ mm, 4-pin / 5-pin (depending on output code)
Process connection:	see order code
Float BN30	
Density Medium:	min $0,60 \mathrm{~g} / \mathrm{cm}^{3}$
Depth of immersion:	$20 \pm 2 \mathrm{~mm}$ at density 1 , $\varnothing 30 \mathrm{~mm}$, height 44 mm
Dimension:	$110 \times 41 \mathrm{~mm}$ (without plug connector and sliding tube)
Weight:	appr. 350 g (without sliding tube)
Total length (L0):	$250 \mathrm{~mm}, 370 \mathrm{~mm}, 410 \mathrm{~mm}$, 1000 mm , others on request
Repeatability:	± 1 digit (without turbulence) including temperature influence
Resolution:	8 or 12 mm
Max. pressure:	15 bar
Temperature range:	
Medium:	$-25^{\circ} \mathrm{C} \ldots+80^{\circ} \mathrm{C}$
Ambient:	$-20^{\circ} \mathrm{C} \ldots+70^{\circ} \mathrm{C}$
Storage:	$-30^{\circ} \mathrm{C} \ldots+80^{\circ} \mathrm{C}$
Power supply:	$15 . . .32 \mathrm{~V}_{\mathrm{DC}}$, reversed polarity protected (SELV, PELV)
Digital display:	4-digit 14-segment LED display, red, digit height 9 mm
Error display:	LED red and alphanumeric display
Power consumption:	approx. 50 mA (without load)
Analogue output:	
Current output:	4... 20 mA
Load:	$\begin{aligned} & \max . \mathrm{RI}=(\mathrm{Ub}-12 \mathrm{~V}) / 20 \mathrm{~mA} \\ & \mathrm{RI}=600 \text { Ohm bei } \mathrm{Ub}=24 \mathrm{~V}_{\mathrm{DC}} \end{aligned}$
Scanning rate:	2 ms
Voltage output:	$0 . .10 V_{\text {d }}$
Rating:	max. 10 mA
Adjustment range:	25%... $100 \% \mathrm{f} . \mathrm{s}$.
Units:	
Distance:	\%, mm, cm, m, inch, feet,
Volume:	liter, m^{3}, gallon

Transistor switching outputs / IO-Link:

Switching function:

Switching output: (auch de)
Adjustment range switch.
point and hysteresis: $0 \% \ldots 125 \%$ f. s.
Switching frequency: max. 100 Hz
Load:

Delay:
Status display(s):

Normally open/normally closed, standard / window mode and diagnosis function adjustable PNP; IO-Link: PNP / NPN / PP
max. 500 mA , short-circuit proof, IO-Link: max. 250 mA
0.0 s ... 50 s adjustable

LED(s) red

Interfaces:
Communication
interface:
IO-Link
Transmission type: \quad COM2 $(38,4 \mathrm{kBaud})$
IO-Link revision: 1.1
SCDI standard: IEC 61131-9
Profile:
Smart Sensor
SIO mode:
Device type:
yes

Process data variable: 1
Binary data channel: 2
Min. process cycle $\quad 2,5 \mathrm{~ms}$
time:
Device ID:
EMV / ESD:
0x051..

$\begin{aligned} & \text { EN 61000-4-2 } \\ & \text { ESD } \end{aligned}$	$\begin{aligned} & 4 \mathrm{kV} \mathrm{CD} / 8 \mathrm{kV} \\ & \mathrm{AD} \end{aligned}$
EN 61000-4-3 HF radiated	$10 \mathrm{~V} / \mathrm{m}$
EN 61000-4-4 Burst	2 kV
EN 61000-4-5Surge	1/2 kV
EN 61000-4-6 HF, conducted	10 V
DIN EN 60028- $2-27$	50 g (11 ms)
DIN EN 60028-	20 g
2-26	(10... 2000 Hz)

Approvals

on request

Dimensions [mm]:

930-0156 -

Process Connections [mm]:

E	LO = total length for G\&M threads
F	LO $=$ total length for NPT threads
\mathbf{G}	LM $=$ LO $-($ To + Tu $)$
H	To $=$ dead band top
I	Tu $=$ dead band bottom

Fitting	Dead band	
	To (top)	Tu (bottom)
G 1 AG	$41 \pm 3[1.22 \pm 0.12]$	
1 " NPT	$25 \pm 3[0.51 \pm 0.12]$	
$1 \frac{1}{2}$ " NPT		

Electrical Connection:

Pin	Signal output Code 1, 7, A, G	Signal output Code 2, 3	Signal output Code 4, 5, 8, D, E, H
$\mathbf{1}$	+Ub	+Ub	+Ub
$\mathbf{2}$	SP 2	Signal	Signal
$\mathbf{3}$	0 V	0 V	0 V
$\mathbf{4}$	$\mathrm{SP} 1 /$ IO-Link		
$\mathbf{5}$	-	SP 1	$\mathrm{SP} 1 /$ IO-Link *

* only code $7,8, G$ and H

Order Code:

BLS2000

Order number:
FSA30-BLS2
1 K X M 0250M

Electronic level switch and tranmitter

Output:
8 mm resolution:
$1=2$ switch points
$2=4 \ldots 20 \mathrm{~mA}$ and 1 switch point
$3=0 . .10 \mathrm{~V}_{\mathrm{DC}}$ and 1 switch point
$4=4 \ldots .20 \mathrm{~mA}$ and 2 switch points
$5=0 . .10 \mathrm{~V}_{\mathrm{DC}}$ and 2 switch points
7 = IO-Link / 2 switch points (PNP, NPN, PP)
8 = IO-Link / 2 switch points (PNP, NPN, PP) / analogue output

12 mm resolution:

A $=2$ switch points
$B=4 \ldots 20 \mathrm{~mA}$ and 1 switch point
$C=0 . . .10 V_{D C}$ and 1 switch point
$D=4 \ldots 20 \mathrm{~mA}$ and 2 switch points
$E=0 \ldots 10 V_{D C}$ and 2 switch points
$\mathrm{G}=1 \mathrm{O}$-Link / 2 switch points (PNP, NPN, PP)
$\mathrm{H}=$ IO-Link $/ 2$ switch points (PNP, NPN, PP) / analogue output

Process connection:

$\mathrm{K}=\mathrm{G} 1$ male
$L^{*}=1 "$ NPT male, without sealing (code X)
$\mathrm{M}^{*}=1$ 1/4"NPT male, without sealing (code X)

Sealing:

$X=$ without sealing
$\mathrm{V}^{*}=$ FKM (DIN 3869)
$\mathrm{E}^{\star}=$ EPDM (DIN 3869)
$B^{\star}=$ NBR (DIN 3869)
Electrical connection:
M = M12x1 plug, (4/5 pole)
Total length LO:
0250M $=250 \mathrm{~mm}$
$0370 \mathrm{M}=370 \mathrm{~mm}$
$0410 \mathrm{M}=410 \mathrm{~mm}$
$1000 \mathrm{M}=1000 \mathrm{~mm}$
$09.8 Z=9,8$ inch
$14.6 Z=14,6$ inch
$16.1 Z=16,1$ inch
$39.4 Z=39,4$ inch
*Special design upon request

Accessories:

Plug connector M12 x 1, 4-pin, with screw terminals, angled (IP65)

Plug connector M12 x 1, 5-pin, with screw terminals, angled (IP65)

Plug connector M12 x 1, 5-pin, with sharped cable (IP67)

